當前位置

首頁 > 英語閱讀 > 雙語新聞 > 超級電池技術取得突破性進展

超級電池技術取得突破性進展

推薦人: 來源: 閱讀: 2.1W 次

超級電池技術取得突破性進展

A breakthrough in electrochemistry at Cambridge university could lead the way to rechargeable super-batteries that pack five times more energy into a given space than today’s best batteries, greatly extending the range of electric vehicles and potentially transforming the economics of electricity storage.

劍橋大學(Cambridge University)在電化學領域的一項突破,或將催生可充電的超級電池。這種電池在給定空間內存儲的能量是目前最好電池的五倍,可大大拓展電動汽車的續航里程,並可能大幅改觀電力存儲的經濟效益。

Chemistry professor Clare Grey and her team have overcome technical challenges in the development of lithium-air batteries — the only cells theoretically capable of giving electric cars the range of petrol and diesel vehicles without having to carry excessively bulky and heavy battery packs.

化學教授克萊爾格雷(Clare Grey)和她的團隊攻克了鋰空氣電池開發中的技術難關。理論上說,只有這種電池能讓電動汽車在不必攜帶巨大而笨重的電池組的情況下,擁有可媲美汽油車及柴油車的續航里程。

If the technology can be turned from a laboratory demonstrator into a commercial product, it will enable a car to drive from London to Edinburgh on a single charge, with batteries that cost and weigh one-fifth of the lithium-ion cells that power today’s electric cars.

如果能把該技術從實驗室的演示品轉變爲商品,將令汽車只充一次電就能從倫敦駛到愛丁堡(約合648公里——譯者注),所用電池的成本和重量卻只有今日電動汽車所用鋰離子電池的五分之一。

“What we’ve achieved is a significant advance for this technology and suggests whole new areas for research,” said Prof Grey. “We haven’t solved all the problems inherent to this chemistry but our results do show routes forward.”

格雷教授表示:“我們取得的成就使這項技術向前邁出了重要一步,預示着全新的研究領域。我們仍未全盤解決這一化學機制所固有的問題,但我們的成果確實揭示了前行的道路。”

Because lithium-air has such a big theoretical advantage over lithium-ion which dominates rechargeable batteries today — its energy density is potentially 10 times greater — researchers around the world are working on lithium-air.

和目前的可充電電池中盛行的鋰離子技術相比,鋰空氣電池理論上擁有巨大的優勢——其能量密度可能要高10倍——以至於全球的研究人員都在開展鋰空氣電池的研究。

A research paper published in the journal Science shows that the Cambridge group has overcome some of the practical problems of the technology, particularly the chemical instability that led to a rapid fall-off in performance of the lithium-air cells demonstrated previously.

發表在《科學》(Science)期刊上的一篇研究論文顯示,劍橋的這個團隊攻克了這種技術中的部分實際問題——尤其是化學上的不穩定問題。在此之前,由於這種化學上的不穩定,鋰空氣電池會顯示出性能迅速衰退的現象。

The basic chemistry of lithium-air batteries is simple. The cell generates electricity by combining lithium with oxygen to form lithium peroxide and is then recharged by applying a current to reverse the reaction. Making these reactions take place reliably over many cycles is the challenge.

鋰空氣電池的基本化學原理十分簡單。這種電池通過鋰和氧結合成過氧化鋰實現放電,再通過施加電流逆轉這一過程而完成充電。而如何可靠地令上述反應在許多週期內反覆發生,則是該技術面臨的挑戰。

The Cambridge scientists adjusted the chemistry to make it more controllable. For example, they converted lithium peroxide to lithium hydroxide (a compound that is easier to work with), they added lithium iodide to the system and they made a very porous “fluffy” electrode from graphene, a form of carbon discovered 12 years ago at Manchester university.

劍橋的科學家對相關化學過程做了調整,以提高其可控性。比如,他們將過氧化鋰轉變爲更易處理的氫氧化鋰,還向系統中添加了碘化鋰,並用石墨烯製作了滲透性極好的“蓬鬆”電極。所謂石墨烯,是12年前曼徹斯特大學(Manchester University)發現的一種碳的同素異形體。

The system demonstrated in the Cambridge lab is 90 per cent efficient, say the researchers, and it can be recharged 2,000 times. But they say at least another decade of work is likely to be required to turn it into a commercial battery for cars and for grid storage — storing the intermittent output of solar and wind generators for use when needed.

研究人員表示,劍橋實驗室中展示的電池系統效率達90%,可充電2000次。不過他們表示,可能至少還需10年的工作,才能將該電池變爲可用於汽車和電網蓄電的商業電池。電網蓄電裝置用於存儲太陽能和風能發電站間歇發出的電力,以便在需要的時候使用。

“We have patented the technology and the intellectual property is owned by Cambridge Enterprise, the university’s commercialisation arm,” said Prof Grey. “We are working with a number of companies to take it forward.”

格雷教授表示:“我們獲得了該技術的專利,其知識產權歸劍橋大學商業化機構劍橋實業(Cambridge Enterprise)所有。我們正與多家公司合作推進這項技術。”